Antimicrobe.org: Achromobacter (Alcaligenes) Species

This is an effort to preserve some wonderful materials I used as a trainee. This website is not being updated anymore and may disappear in the future. I have no intention of infringing the copyright - if antimicrobe.org wishes me to remove the material, please get in touch with me.

Updated March, 2009

Sally A Roberts MBChB, FRACP, FRCPA,   Selwyn D R Lang, MBChB, FRACP, FRCPA

GENERAL DESCRIPTION

Microbiology Guided Medline Search

               The genus Achromobacter is regarded as a member of the Alcaligenaceae family belonging to the Proteobacteria beta group. The present members of the genus Achromobacter are Achromobacter. xylosoxidans, Achromobacter xylosoxidans subsp. xylosoxidans, Achromobacter xylosoxidans subsp. denitrificans, Achromobacter denitrificans, Achromobacter insolitus, Achromobacter ruhlandii, Achromobacter piechaudii. and Achromobacter spanius (81).  Members of the genus Achromobacter are motile, non-fermentative, oxidase- and catalase-positive, gram-negative bacilli which grow overnight, under aerobic conditions on most solid media, including MacConkey. A. xylosoxidans subsp. denitrificans is also able to grow anaerobically utilizing nitrate as an electron acceptor. Colonies are typically small with a thin, irregular, spreading edge. In general Achromobacter species produce alkaline reactions with carbohydrates, A. xylosoxidans is the exception, acidifying OF glucose and OF xylose.

               A. piechaudii differs from A. xylosoxidans and A. xylosoxidans subsp. denitrificans by its ability to grow in 6.5% salt. A. piechaudii and A. ruhlandii reduce nitrate to nitrite but not further, whereas A. xylosoxidans and A. xylosoxidans subsp. denitrificans reduce nitrate to free nitrogen gas. Achromobacter spp. can utilize citrate as a sole carbon source except for A. piechaudii.

               The genus Alcalignes contains one member, Alcaligenes faecalis. A. faecalis is a motile, nonfermentative, oxidase- and catalase-positive gram-negative bacillus. The colonial morphology is similar to Achromobacter but A. faecalis can be distinguished by the presence of a fruity odor (hence the previous name A. odorans) and it may cause green discoloration of blood agar. It produces an alkaline reaction with carbohydrates and is able to utilize citrate as a sole source of carbon. Like A. piechaudii, A. faecalis is able to grow in 6.5% salt.

Epidemiology Guided Medline Search

               Achromobacter and Alcaligenes species are ubiquitous in soil and water and can be recovered from the human respiratory tract and gastrointestinal tract in hospitalized patients (69). Environmental sources such as well water, tap water and swimming pools have been identified (3068). Colonization of patients is facilitated by contamination of fluids in use in hospitals, including soaps and disinfectants and devices such as nebulizers, pressure transducers, incubators and humidifiers. In these circumstances, it is sometimes difficult to distinguish between colonization and infection. Achromobacter and Alcaligenes species are occasionally recovered in pure culture from normally sterile sites and are recognized as significant pathogens, particularly in the immunocompromised and the hospital environment.

Clinical Manifestations Guided Medline Search

               The literature on infections due to Achromobacter and Alcaligenes species is comprised of case reports, reviews of case reports and case series. Infections include: bacteremia (1101719, 2537394168737482); meningitis (1316); prosthetic joint infection (72); sternal osteomyelitis (78); ophthalmic infections (315357607071); chronic otitis media (5480); lung infection (2642); spontaneous and peritoneal dialysis-associated peritonitis (82148), liver abscess (3,75) and endocarditis (124952). The majority of these infections occurred in adult patients who had underlying malignancy or were otherwise immunocompromised.

               Legrand et al. (39) reviewed 10 cases of bacteremia due to A. xylosoxidans occurring in patients with underlying malignancies and reviewed 23 other cases of bacteremia reported in the literature. Duggan et al. (19) described 77 cases of bacteremia due to A. xylosoxidans including the 23 cases reported by the previous authors (38). The episode of bacteremia was nosocomially acquired in 54 (70%) patients and for 28 (36%) of the patients infection was associated with an outbreak, or following contact with a contaminated solution or piece of equipment within the hospital. The most common clinical syndromes associated with the episode of bacteremia were; primary bacteremia 19%, intravascular catheter associated bacteremia 19%, and pneumonia 16%. Of the more recently published case series, three with over 30 patients each (12564) reported rates of nosocomial bacteremia ranging between 33 – 96%. In two of the series (164) 17.5 and 52% of episodes were polymicrobial. Case series of pseudobacteremia have been reported (114666); the most likely source in these events were contaminated disinfectant solutions or containers, and nonsterile blood collection tubes.

               Weitkamp et al. (79) reported a patient with hyper-IgM syndrome with recurrent episodes of bacteremia due to A. xylosoxidans over a 3.5 year period; lymphoid tissue was considered the most likely source for his recurrent A. xylosoxidans bacteremia. Eight cases of bacteremia and/or respiratory disease caused by A. xylosoxidans in patient infected with the immunodeficiency virus have been reported (2642). There are several reports of neonatal infections, especially bacteremia and meningitis, including maternal-fetal transfer (29).

               Both colonization and infection with A. xylosoxidans in children with cystic fibrosis have been described (1415202334475559). Dunne et al. (20) reported an epidemiological investigation of 16 cases of A. xylosoxidans, of which 8 occurred in patients with cystic fibrosis. Cross infection between patients with A. xylosoxidans has been reported (59).  Colonization with A. xylosoxidans can be long term; Moissenet et al. reported that 8 of 120 children with cystic fibrosis were persistently colonized with A. xylosoxidans for a mean of 3.5 years despite various antibiotic treatments including intravenous ticarcillin, piperacillin, ceftazidime and imipenem, oral trimethoprim-sulphamethoxazole and ciprofloxacin and nebulized colistin (47). Peltroche-Llacsahuanga et al. (55) described two brothers with cystic fibrosis with long-standing colonization with A. xylosoxidans. Colonization of the second brother occurred three years after the first and there did not appear to be any evidence of a change in clinical status over the observation periods of six and three years, respectively. A retrospective case control study of patients did not show decline in lung function over time for patients colonized with A. xylosoxidans (15) but Rønne Hansen et al reported an increase in lung function decline in a group of patients with rapidly increasing specific A. xylosoxidans antibodies (59). There is little evidence to suggest that colonisation with panresistant Gram-negative bacilli in cystic fibrosis patients undergoing lung transplantation including A. xylosoxidans impacts on survival (28).

               The great majority of clinical reports of infection caused by this genus implicate A. xylosoxidans. Other Achromobacter spp. and Alcaligenes faecalis are less frequently isolated. Morrison et al. (48) reported three cases of peritonitis due to A. xylosoxidans subsp. denitrificans and Cheron et al. (9) reported 10 patients with respiratory tract colonization due to A. xylosoxidans subsp. denitrificans, two of whom were found to have been exposed to contaminated water used in a nebulizer. A. piechaudii has been associated with chronic otorrhoea in one patient (54) and recurrent bacteremia in association with an intravascular catheter in another patient (35).

               Alcaligenes faecalis is seldom isolated from clinical material; Bizet et al. (7) described six patients from whom A. faecalis was isolated from urine (3), ear discharge (1) and pus from discharging wounds (2). Bacteraemia due to A. faecalis accounted for only one of 52 (2%) episodes of bacteraemia in cancer patients caused by A. xylosoxidans and Alcaligenes sp. over a ten year period (1) Post-operative ophthalmic infections have also been reported (333644).Ahmed MS et al. Achromobacter xylosoxidans, an Emerging Pathogen in Catheter-related Infection in Dialysis Population Causing Prosthetic Valve Endocarditis: A Case Report and Review of Literature. Clin Nephrol. 2009 Mar;71(3):350-4.

Reddy AK, Garg P, et al. Clinical, Microbiological Profile and Treatment Outcome of Ocular Infections Caused by Achromobacter xylosoxidans. Cornea. 2009 Aug 31. [Epub ahead of print]

SUSCEPTIBILITY IN VITRO AND IN VIVO Guided Medline Search In Vitro and In Vivo

Achromobaceter xylosoxidans (recently Alcaligenes xylosoxidans subsp. xylosoxidans)

               Four published studies  provide MIC50 and MIC90 data for a wide range of antibiotics for clinical isolates of A. xylosoxidans (Table 1) (6243276). The most consistently active antibiotics among those tested were imipenem, meropenem, trimethoprim-sulphamethoxazole, piperacillin, ticarcillin/clavulanate and ceftazidime. All isolates were resistant to aminoglycosides, ampicillin, amoxicillin, mecillinam (amidinocillin) and aztreonam; most were resistant to first, second, third and fourth generation cephalosporins, other than ceftazidime, and to the quinolones. These are in keeping with the results from two small series (419). The addition of clavulanate to amoxicillin and to ticarcillin reduced the mean MICs of these antibiotics such that a majority of isolates were susceptible to ticarcillin-clavulanate in vitro (Table 1).

               A detailed study of the susceptibility of 56 clinical isolates and two reference strains of A. xylosoxidans (formerly known as Alcaligenes denitrificans subsp. xylosoxydans) to 12 β-lactam antibiotics, and of the effect of β-lactamase inhibitors, was conducted by Mensah et al. (45). All strains produced β-lactamase, but two phenotypic classes of activity were observed: 41 strains produced β-lactamase inhibited by cloxacillin (type S) but not by clavulanic acid, whereas the other 17 (type R) strains showed β-lactamase activity inhibited by clavulanic acid. Tables 2 and 3 show the susceptibilities of these two groups of isolates. All were susceptible to imipenem and to moxalactam. The 41 type S strains were highly susceptible to ticarcillin, piperacillin and azlocillin. Susceptibility to cephalosporins was more variable. These strains were highly resistant to cefuroxime and cefoxitin, resistant to cefotaxime and cefamandole, and susceptible to cefoperazone and ceftazidime. In the case of the type R strains, Table 3, clavulanic acid potentiated amoxicillin, ticarcillin, cefoperazone and, to a lesser extent, ceftazidime, but not cefuroxime or cefotaxime; tazobactam potentiated piperacillin. The authors note in their discussion that isolates resistant to penicillins are also resistant to sulphonamides, however, others have found no cross-resistance with trimethoprim-sulphamethoxazole (16). Saiman et al. (61) looked specifically at A. xylosoxidans isolates from patients with cystic fibrosis, Table 4.

Achromobacter xylosoxidans subsp. denitrificans

               In one series (6) the antibiogram for A. xylosoxidans subsp. denitrificans isolates, Table 5, did not differ significantly from that for A. xylosoxidans, Table 1.

Achromobacter piechaudii and Alcaligenes faecalis

               These organisms are less commonly encountered clinically and there is a relative paucity of in vitro susceptibility data. Tables 6 and 7 show what has been reported (676). Achromobacter piechaudii isolates showed a resistance pattern similar to A. faecalis, but were more markedly resistant to cefoxitin and cefotaxime, Table 6Alcaligenes faecalis isolates, Table 7, were less resistant to cephalosporins than A. xylosoxidans and clavulanate rendered most susceptible to amoxicillin and to ticarcillin. Piperacillin had slightly greater intrinsic activity than ticarcillin, but was not investigated in combination with tazobactam. The quinolones showed variable activity. All were resistant to aztreonam and most to the aminoglycosides.

               Two strains of extended-spectrum ß-lactamase producing A. faecalis have been reported (1856). A strain of A. faecalis with PER-1 extended-spectrum beta-lactamase production was isolated from a patient's urine (56). The authors raised the concern that A. faecalis may be an efficient shuttle for spreading of this resistance gene among other opportunistic pathogens that are normally commensal microbiota. The second strain, also isolated from a patient’s urine, (18) contained a gene for blaTEM-21 located on the chromosome.

               Jorgensen et al. reported that all 14 isolates of Achromobacter spp., other than A. xylosoxidans, in their series were susceptible to meropenem (MIC90 0.25μg/ml) and to imipenem (MIC90 1μg/ml) (32). In contrast the MIC90 of meropenem and of imipenem for 15 isolates of A. xylosoxidans were 4μg/ml and 8μg/ml respectively (32). A. xylosoxidans strains carrying metallo-ß-lactamases were first reported in Japan in the mid-1990’s (67). These strains carried metallo-ß-lactamases IMP enzymes. More recently VIM-2 enzymes have been detected in two strains isolated from clinical specimens (6567) in Korea and Greece; the MICs for imipenem and meropenem were between 16 – 64 mg/L.

               In summary, Achromobacter spp. and A. faecalis are susceptible to the carbapenems, imipenem and meropenem but strains carrying metallo-ß-lactamases have been reported (6567). Most isolates are susceptible to trimethoprim-sulphamethoxazole, piperacillin (especially with tazobactam) and ticarcillin/clavulanate. Susceptibility is variable to cephalosporins, among which moxalactam and ceftazidime are the most active. Tetracyclines, chloramphenicol, macrolides and quinolones show variable activity. Achromobacter spp. and A. faecalis are generally resistant to aminoglycosides, ampicillin, penicillin and rifampicin (63).

               A further feature of note is that A. xylosoxidans, and perhaps other Achromobacter spp. also, is commonly tolerant to many antibiotics including trimethoprim-sulphamethoxazole, ticarcillin, mezlocillin, piperacillin and cefoperazone (251). Tolerance is of potential importance in patients with endocarditis, meningitis, neutropenic sepsis or prosthetic device infection, conditions in which bactericidal activity is deemed relevant. Most case reports of treatment of infections due to Achromobacter spp. do not describe bactericidal titres. However, a titre of 1:16 was obtained in the CSF of a patient successfully treated with a combination of ceftazidime, gentamicin and trimethoprim-sulphamethoxazole (13). There are very few reports of the effects of combinations of antibacterials against Achromobacter spp., other than β-lactam plus β-lactamase inhibitor and trimethoprim plus sulphamethoxazole. Despite resistance to amikacin, synergy has been reported with amikacin plus ceftazidime, a combination used successfully to treat intravascular catheter-related sepsis due to A. xylosoxidans in a child with AIDS (10). Since in this case synergy was detected by disc diffusion testing and bactericidal titres were not reported, it is not certain whether the combination was bactericidal. The two-disk approximation method and time-kill assays (16) have shown that the combination of a beta-lactam drug or trimethoprim-sulphamethoxazole with gentamicin can be synergistic but the combination of a beta-lactam drug and trimethoprim-sulphamethoxazole is uniformly antagonistic. In vitro testing using combinations of azithromycin-tobramycin, azithromycin-ceftazidime and azithromycin-doxycycline or azithromycin trimethoprim-sulfamethoxazole inhibited 22% of A. xylosoxidans strains from patients with cystic fibrosis. The authors rightly state that in vitro synergy studies do not predict in vivo efficacy (62).

ANTIMICROBIAL THERAPY Guided Medline Search Smart search

               There are no large series and no randomized controlled trials. On the basis of in vitro data, carbapenems are likely to replace trimethoprim-sulphamethoxazole as the agents of first choice for serious infections due to Achromobacter spp. and A. faecalis. Piperacillin with or without tazobactam and ticarcillin with clavulanate are alternatives. It should be noted that a β-lactamase hyperproducing variant of A. xylosoxidans has been selected in vivo in a patient treated initially with piperacillin and pefloxacin (16). The CSF cultures were still culture-positive after one month of therapy. Although the therapy was changed to trimethoprim-sulphamethoxazole the patient, who had acute lymphoblastic leukemia, died a few days later (16). Combination therapy may be more effective than a single agent in treating patients with serious A. xylosoxidans infections, even if the isolate does not appear to be susceptible to aminoglycosides (19).

               Combination therapy with ceftazidime and amikacin for 14 days has been used successfully in treating Broviac catheter related sepsis where the catheter was not removed (10). If synergy, as was shown in vitro in this case, can be shown with an aminoglycoside, then combination therapy could be considered.

(Printable Version of Antimicrobial Therapy for Achromobacter)

ENDPOINTS FOR MONITORING THERAPY Guided Medline Search

               For invasive infections, repeat cultures at the original site is indicated if symptoms or fever persists on antibiotic therapy.

VACCINES Guided Medline Search

               No vaccine is available for Achromobacter spp.

PREVENTION AND INFECTION CONTROL Guided Medline Search Smart search

               Achromobacter spp. are often associated with an aqueous environment and rapidly colonizes these sorts of environments within the hospital setting, they are less often found on fomites or in nonaquatic surroundings. Outbreaks related to contaminated saline (92743), chlorhexidine (777346) deionized water (58) and quaternary ammonium solutions (22) have been reported. Alcaligenes denitrificans subsp. xylosoxydans has been isolated from unopened samples of benzalkonium chloride, the distilled water used by the company's manufacturing plant was found to be the source (51).

               The majority of infections caused by Achromobacter spp. are nosocomially acquired (19). An appreciation of the hospital sources of the organism and the environments in which they are likely to colonize is important. As described above, aqueous fluids and disinfectants containing alcohol or quaternary ammonium compounds and nonbacteriostatic saline are perfect culture media for Achromobacter spp.. When investigating a suspected outbreak due to Achromobacter spp. phenotypic typing methods are of little use due to the predictable pattern of antibiotic susceptibility and the limited range of biochemical reactions. A number of different molecular genotyping methods including pulse-field gel electrophoresis, restriction fragment-length polymorphism, polymerase chain reaction and randomly amplified polymorphic DNA have been utilized (24940467377,) to assist with the epidemiological investigation of suspected outbreaks. Benaoudia et al. (5) was able to show that nine isolates of A. xylosoxidans were genotypically distinct whereas phenotypically the isolates were indistinguishable and as the period of hospitalization of five of the patients overlapped they were able exclude a common source of exposure or patient-to-patient contact.

               Along with good adherence to hand hygiene by healthcare workers special attention should be paid to maintaining sterility in aqueous fluids used in the irrigation of wounds and body parts. In the event of an outbreak the use of multi-use containers for aqueous fluids used for patient contact should be avoided. Sodium hypochlorite or povidine-iodine solutions are effective disinfectants against Achromobacter spp. (63).

TABLES

Table 1.  Susceptibilities of Achromobacter xylosoxidans

Table 2.  Susceptibilities of cloxacillin-sensitive ß-lactamase-producing Achromobacter xylosoxidans

Table 3.  Susceptibilities of cloxacillin/clavulanic acid-susceptible ß-lactamase-producing Achromobacter  xylosoxidans

Table 4.  In vitro susceptibilities of Achromobacter xylosoxidans isolates from patients with cystic fibrosis

Table 5.  In vitro susceptibilities of Achromobacter xylosoxidans subsp. denitifricans

Table 6.  In vitro susceptibilities of Achromobacter piechaudii

Table 7.  In vitro susceptibilities of Alcaligenes faecalis

REFERENCES [PubMed] 

1. Aisenberg G, Rolston KV, Safdar A. Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989-2003). Cancer 2004; 101: 2134-40.[PubMed] 

2. Arroyo JC, Jordan W, Lema MW, Brown A. Diversity of plasmids in Achromobacter xylosoxidans isolates responsible for a seemingly common-source nosocomial outbreak. J Clin Microbiol 1987;25:1952-1955. [Pub Med]

3. Asano K, Tada S, Matsumoto T, Miyase S, kamio T, Sakurai K, Iida M. A novel bacterium Achromobacter xylosoxidans as a cause of liver abscess: three case reports. J Hepatol 2005; 43: 362-5. [PubMed]

4. Auckenthaler R, Michea-Hamzehpour M, Pechere JC. In vitro activity of newer quinolones against aerobic bacteria. J Antimicrob Chemother 1986;17(Suppl.B):29-39.[Pub Med]

5. Benaoudia F, Bingen E. Evidence for the genetic unrelatedness of nosocomial Alcaligenes xylosoxidans strains in a pediatric hospital. Infect Cont Hosp Epidemiol 1997;18:132-134. [Pub Med]

6. Bizet C, Tekaia F, Philippon A. In vitro susceptibility of Alcaligenes faecalis compared with those of other Alcaligenes spp. to antimicrobial agents including seven b-lactams [Letter]. J Antimicrob Chemother 1993;32:907-910. [Pub Med]

7. Bizet J, Bizet C. Strains of Alcaligenes faecalis from clinical material. J Infect 1997; 35:167-169.  [Pub Med]

8. Castellote J, Tremosa G, Ben SL, Vazguez S. Spontaneous bacterial peritonitis due to Alcaligenes xylosoxidans. Am J Gastroenterol 2001;96:1650-1651. [Pub Med]

9. Cheron M, Abachin E, Guerot E, El-Bez M, Simonet M. Investigation of hospital-acquired infections due to Alcaligenes denitrificans subsp. xylosoxidans by DNA restriction fragment length polymorphism. J Clin Microbiol 1994;32:1023-1026. [Pub Med]

10. Cieslak TJ, Raszka WV. Catheter-associated sepsis due to Alcaligenes xylosoxidans in a child with AIDS. Clin Infect Dis. 1993;16:592-593. [Pub Med]

11. Çiftçi E, Güriz H, Aysev AD, Kendirli T, İnce E, Atasay B, Doğru Ű Alcaligenes xylosoxidans subspecies denitrificans pseudobactersemia in a university children’s hospital. J Hosp Infect 2002; 52: 73-4. [PubMed]

12. Cohen PS, Maguire JH, Weinstein L. Infective endocarditis caused by gram-negative bacteria: a review of the literature, 1945-1977. Prog Cardiovasc Dis 1980;22:205-242. [Pub Med]

13. D'Amato RF, Salemi M, Mathews A, Cleri DJ, Reddy G. Achromobactor xylosoxidans (Alcaligenes xylosoxidans subsp. xylosoxidans) meningitis associated with gunshot wound. J Clin Microbiol 1988;26:2424-2426. [Pub Med]

14. Davies JC, Rubin BK. Emerging and Unusual Gram-negative infections in cystic fibrosis. Sem Resp Crit Care Med 2007; 28: 312-21.[PubMed] 

15. De Baets F, Schelstraete P, Van Daele S, Haerynck F, Vaneechoutte M. Achromobacter xylosoxidans in cystic fibrosis: prevalenc and clinical relevance. J Cyst Fibros 2007; 6: 75-8.[PubMed] 

16. Decre D, Arlet G, Danglot C, Lucet J-C, Fournien G, Bergogne-Berezin E, Philippon A. A beta-lactamase-overproducing strain of Alcaligenes denitrifications subsp. xylosoxidans isolated from a case of meningitis. J Antimicrob Chemother 1992;30:769-779. [Pub Med]

17. de Fernandez MI, Bugarin G, Arevalo CE. Achromobacter xylosoxidans bacteremia in a patient with community-acquired pneumonia. Medicina 2001; 61: 79-80. [PubMed]

18. Dubois V, Arpin C, Coulange L, André C, Noury P, Quentin C. TEM-21 extended-spectrum ß-lactamase in a clinical isolate of Alcaligenes faecalis from a nursing home. J Antimicrob Chemother 2006; 57: 368-9. [PubMed]

19.  Duggan JM, Goldstein SJ, Chenoweth CE, Kauffman CA, Bradley SF. Achromobacter xylosoxidans bacteremia: report of four cases and review of the literature. Clin Infect Dis 1996;23:569-576. [Pub Med]

20. Dunne WMJ, Maisch S .Epidemiological investigation of infections due to Alcaligenes species in children and patients with cystic fibrosis: use of repetitive-element-sequence polymerase chain reaction. Clin Infect Dis 1995;20:836-841. [Pub Med]

21. El-Shahawy M, Kim D, Gadallah MF. Peritoneal dialysis-associated peritonitis caused by Alcaligenes xylosoxidans. Am J Nephrol 1998;18:452-455. [Pub Med]

22. Gahrn-Hansen B, Alstrup P, Dessau R, Fuursted K, Knudsen A, Olsen H, Oxh?j H, Peterson AR, Siboni A, Siboni K. Outbreak of infection with Achromobacter xylosoxidans from intravascular pressure transducers. J Hosp Infect 1988;12:1-6. [Pub Med]

23. Gillow C, Shaw A, Moore JE, Elborn JS, Murphy PG. Antibiotic resistance and identification of uncommon Gram-negative bacteria isolated from sputum of adult patients with cystic fibrosis. Br J Biomed Sci 2006; 63: 22-5.[PubMed]

24. Glupczynski Y, Hansen W, Freney J, Yuourassowsky E. In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents. Antimicrob Agents Chemother 1988;32:276-278.  [Pub Med]

25. Gómez-Cerezo J, Suárez I, Ríos JJ, Peña P, García de Miguel MJ, de José M, Monteagudo O, Linares P, Barbado-Cano A, Vázquez JJ. Achromobacter xylosoxidans bacteremia: a 10 year analysis of 54 cases. Eur J Clin Microbiol Infect Dis 2003; 22: 360-3.[PubMed]

26. Gradon JD, Mayrer AR, Hayes J. Pulmonary abscess associated with Alcaligenes xylosoxidans in patients with AIDS [Letter]. Clin Infect Dis 1993;17:1071-1072. [Pub Med]

27. Granowitz EV, Keenholtz SL. A pseudoepidemic of Alcaligenes xylosoxidans attributable to contaminated saline. Am J Infect Control 1998;26:146-148. [Pub Med]

28. Hadjiliadis D, Steele MP, Chaparro C, Singer LG, Waddell TK, Hutcheon MA, Davis RD, Tullis DE, Palmer SM, Keshavjee S. Survival of lung transplant patients with cystic fibrosis harbouring panresistant bacteria other than Burkholderia cepacia, compared with patients harbouring sensitive bacteria. J Heart Lung Transplant 2007; 26: 834-8. [Pub Med]

29. Hearn YR, Gander RM. Achromobacter xylosoxidans an unusual neonatal pathogen. Am J Clin Path 1991;96:211-214. [Pub Med]

30. Holmes B, Snell JS, Lapage SP. Strains of Achromobacter xylosoxidans from clinical material. J Clin Pathol 1977;30:595-601. [Pub Med]

31. Huang ZL, Chen YF, Chang SW, Lin KK, Hsiao CH. Recurrent Alcaligenes xylosoxidans keratitis. Cornea 2005; 24: 489-90. [Pub Med]

32. Jorgensen JH, Maher LA, Howell AW. Activity of meropenem against antibiotic-resistant or infrequently encountered gram-negative bacilli. Antimicrob Agents Chemother 1991;35:2410-2414.[Pub Med]

33. Kaliaperumal S, Srinivasan R, Gupta A, Parija SC. Postoperative endophthalmitis due to an unusual pathogen: Alcaligenes faecalis. Eye 2006; 20: 968-9. [Pub Med]

34. Kanellopoulou M, Pournaras S, Iglezos H, Skarmoutsou, Papafrangas E, Maniatis AN. Persistent colonization of nine cystic fibrosis patients with an Achromobacter (Alcaligenesxylosoxidans clone. Eur J Clin Microbiol Infect Dis 2004; 23: 336-9. [Pub Med]

35. Kay SE, Clark RA, White KL, Peel MM. Recurrent Achromobacter piechaudii bacteremia in a patient with hematological malignancy. J Clin Microbiol 2001;39:808-810.[Pub Med]

36. Khokar DS, Sethi HS, Kumar H, Sudan R, Sharma N, Nayak N. Postkeratoplasty endophthalmitis by Alcaligenes faecalis. Cornea 2002; 21: 232-4.[Pub Med]

37. Knippschild M, Schmid EN, Uppenkamp M, Konig E, Meusers P, Brittinger G, Hoffkes HG. Infection by Alcaligenes xylososxidans subsp. xylososxidans in neutropenic patients. Oncology 1996;53:258-262.  [Pub Med]

38. Kumar A, Ray P, Kanwar M, Sethi S, Narang A. Investigation of hospital-acquired infections due to Achromobacter xylosoxidans in a tertiary care hospital in India. J Hosp Infect 2006; 62: 248-50.  [Pub Med]

39. Legrand C, Anaissie E. Bacteremia due to Achromobacter xylosoxidans in patients with cancer. Clin Infect Dis 1992;14:479-484. [Pub Med]

40. Lin YH, Liu PY, Shi ZY, Lau YJ, Hu BS. Comparison of polymerase chain reaction and pulsed-field gel electrophoresis for the epidemiological typing of Alcaligenes xylosoxidans subsp. xylosoxidans in a burn unit. Diagn Microbiol Infect Dis 1997;28:173-178. [Pub Med]  

41. Mandell WF, Garvey GJ, Neu HC. Achromobacter xylosoxidans bacteremia. Rev Infect Dis 1987;9:1001-1005. [Pub Med]

42. Manfredi R, Nanetti A, Ferri M, Chiodo F. Bacteremia and respiratory involvement by Alcaligenes xylosoxidans in patients infected with the human immunodeficiency virus. Eur J Clin Microbiol Infect Dis 1997;16:933-938. [Pub Med]

43. McGuckin MB, Thorpe RJ, Koch KM, Alavi A, Staum M, Abrutyn E. An outbreak of Achromobacter xylosoxidans related to diagnostic tracer procedures. Am J Epidemiol 1982;115:785-793. [Pub Med]

44. Mehrotra A, Gadia R, Venkatesh P, Nayak N, Garg S. posttraumatic endophthalmitis due to a rare pathogen, Alcaligenes faecalis. Can J Ophthalm 2007; 42: 487-8. [Pub Med]

45. Mensah K, Philippon A, Richard C, Nevot P. Susceptibility of Alcaligenes denitrificans subspecies xylososxidans to beta-lactam antibiotics. Eur J Clin Microbiol Infect Dis 1990;9:405-409. [Pub Med]

46. Molina-Cabrillana J, Sanatan-Reyes C, González-Garcia A, Bordes-Benítez A, Horcajada I Outbreak of Achromobacter xylosoxidans pseudobacteremia in a neonatal care unit related to contaminated chlorhexidine solution. Eur J Clin Microbiol Infect Dis 2007; 26: 435-37. [Pub Med]

47. Moissenet D, Baculard A, Valcin M, Marchand V, Tournier G, Garbang-Chenon A,Vu-Thien H. Colonization by Alcaligenes xylosoxidans in children with cystic fibrosis: a retrospective clinical study conducted by means of molecular epidemiological investigation. Clin Infect Dis 1997;24:274-275. [Pub Med]

48. Morrison AJ, Boyce K. Peritonitis caused by Alcaligenes denitrificans subsp. xylososxidans: case report and review of the literature. J Clin Microbiol 1986;24:879-881. [Pub Med]

49. Nanuashvili A, Kacharava G, Jashiashvili N A case of native valve infective endocarditis caused by Alcaligenes xylosoxidans. Eur Com Dis Bull 2007; 12: E070524.2. [Pub Med]

50. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically-fifth edition; approved standard. NCCLS document M7-A4, Wayne, Pennsylvania, 2000. [Pub Med]

51. Oie S, Kamiya A. Microbial contamination of benzalkonium chloride products. Am J Health-Syst Pharm 1998;55:2534-2537. [Pub Med]

52. Olson DA, Hoeprich PD. Post-operative infection of an aortic prosthesis with Achromobacter xylosoxidans. West J Med 1982;136:153-157. [Pub Med]

53. Pan TH, Heidemann DG, Dunn SP, Chow CYC, Gossage D. Delayed onset and recurrent Alcaligenes xylosoxidans keratitis. Cornea 2000;19:243-245. [Pub Med]

54. Peel MM, Hibberd AJ, King BM, Williamson HG. Alcaligenes piechaudii from chronic ear discharge. J Clin Microbiol 1988;26:1580-1581. [Pub Med]

55. Peltroche-Llacsahuanga H, Kentrup H. Persistent airway colonization with Alcaligenes xylosoxidans in two brothers with cystic fibrosis. Eur J Clin Microbiol Infect Dis 1998; 17:132-134. [Pub Med]

56. Pereira M, Perilli M, Mantengoli E, Luzzaro F, Toniolo A, Rossolini GM, Amicosante G. PER-1 extended-spectrum B-lactamase production in an Alcaligenes faecalis clinical isolate resistant to extended-spectrum cephalosporins and monobactams from a hospital in Northern Italy. Microbial Drug Resistance 2000;6:85-90. [Pub Med]

57. Rahman MK, Holz ER. Alcaligenes xylosoxidans and Propionibacterium acnes postoperative endophthalmitis in a pseudophakic eye. Am J Ophth 2000;129:813-815. [Pub Med]

58. Reverdy ME, Freney J, Fleurette J, Coulet M, Surgot M, Marmet D, Ploton C. Nosocomial colonisation and infection by Achromobacter xylosoxidans. J Clin Microbiol 1984;19:140-143. [Pub Med]

59. Rønne Hansen C, Pressler T, Høiby N, Gormsen M. Chronic infection with Achromobacter xylosoxidans in cystic fibrosis patients: a retrospective case control study. J Cyst Fibros 2006; 5: 245-51.  [Pub Med]

60. Rush R, Friedlander M. Alcaligenes xylosoxidans conjunctivitis. Cornea 2007; 26: 868-9. [Pub Med]

61. Saiman L, Chen Y, Tabibi S, San Gabriel P, Zhou J, Liu Z, Lai L, Whittier S. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. J Clin Microbiol 2001; 39; 3942-5. [Pub Med]

62. Saiman L, Chen Y, San Gabriel P, Knirsch C. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 2002; 46: 1105-7. [Pub Med]

63. Schoch PE, Cunha BA. Nosocomial Achromobacter xylosoxidans infection. Infect Cont Hosp Epidemiol 1988;9:84-87. [Pub Med]

64. Shie SS, Huang CT, Leu HS. Characteristics of Achromobacter xylosoxidans bacteremia in northern Taiwan. J Microbiol Immunol Infect 2005; 38: 277-82. [Pub Med]

65. Shin KS, Han K, Lee J, Hong SB, Son BR, Youn SJ, Kim J, Shin HS. Imipenem-resistant Achromobacter xylosoxidans carrying blaVIM-2-containing class 1 integron. Diag Microbiol Infect Dis 2005; 53: 215-20. [Pub Med]

66. Sieber E, Llanes C, Lafon I, Ogier-Desserrey A, Duez JM, Pechinot A, Caillot D, Grandjean M, Sixt N, Neuwirth C. Presumed pseudobacteremia outbreak resulting from contamination of proportional disinfectant dispenser. Eur J Clin Microbiol Infect Dis 2006; 26: 195-8. [Pub Med]

67. Sofianou D, Markogiannakis A, Metzidie E, Pournaras S, Tsarkris A. VIM-2 metallo-beta-lactamase in Achromobacter xylosoxidans in Europe. Eur J Clin Microbiol Infect Dis 2005; 24: 854-5.[Pub Med]

68. Spear JB, Fuhrer J, Kirby BD. Achromobacter xylosoxidans (Alcaligenes xylosoxidans subsp. xylososxidans) bacteremia associteed with a well-water source: a case report and review of the literature. J Clin Microbiol 1988;26:598-599.  [Pub Med]

69. Steinberg JP, Del Rio C. Other Gram-negative and Gram-variable bacilli. In: Mandell, GL, Bennet, JE, and Dolin, R. (eds), Principles and practice of infectious diseases, 6th ed. Churchill Livingstone, New York. 2005;2751-2768.  [Pub Med]

70. Swart J, Volker-Dieben HJ, Reichert-Thoen JWM. Alcaligenes xylosoxidans endophthalmitis 8 months after cataract extraction. Am J Ophthalmol 1999;127:345-346. [Pub Med]

71. Tayeri T, Kelly LD. Alcaligenes faecalis corneal ulcer in a patient with cicatricial pemphigoid. Am J Ophthalmol 1993;115:255-256. [Pub Med]

72. Taylor P, Fischbein L. Prosthetic knee infection due to Achromobacter xylosoxidans. J Rheumatol 1992;19:992-993. [Pub Med]

73. Tena D, Caranza R, Barberá JR, Valdezate S, Garrancho JM, ArranzM, Sáez-Nieto JA. Outbreak of long-term intravascular catheter-related bacteremia due to Achromobacter xylosoxidans subspecies xylosoxidans in a hemodialysis unit. Eur J Clin Microbiol Infect Dis 2005; 24: 727-32. [Pub Med]

74. Tsay RW, Lin LC, Chiou CS, Liao JC, Chen CH, Liu CE, Young TG. Alcaligenes xylosoxidans bacteremia: clinical features and microbiological characteristics of isolates. J Microbiol Immunol Infect 2005; 38: 194-99. [Pub Med]

75. Tsuchiya T, Ohtani H, Fujioka H, Mizoe A, Higami Y, Shimokawa I Fatal Alcaligenes xylosoxidans infection of the liver: presenting as a liver mass after cholecystectomy. J Gastro Hepatol 2006; 21: 1081-2. [Pub Med]

76. Vay CA, Almuzara MN, Rodrigeuz CH, Pugliese ML, Lorenzo Barba F, Mattera JC, Famiglietti AM. ‘In vitri’ activity of different antimicrobial agents on Gram-negative nonfermentative bacilli, excluding Pseudomonas aeruginosa and Acinetobacter spp.. Revista Argentina de Microbioloica 2005; 37: 43-45.[Pub Med]

77. Vu-Thien H, Darbord JC, Moissenet D, Dulot C, Dufourcq JB, Marsol P, Garbang-Chenon A. Investigation of an outbreak of wound infections due to Alcaligenes xylosoxidans transmitted by chlorhexidine in a burns unit. Eur J Clin Microbiol Infect Dis 1998;17:724-726. [Pub Med]

78. Walsh RD, Klein NC, Cunha BA. Achromobacter xylosoxidans osteomyelitis [Letter]. Clin Infect Dis 1993;16:176-178. [Pub Med]

79. Weitkamp J-H, Tang Y-W, Haas DW, Midha NK, Crowe JE. Recurrent Achromobacter xylosoxidans bacteremia assocated with persistent lymph node infection in a patient with hyper-immunoglobulin M syndrome. Clin Infect Dis 2000;31:1183-1187. [Pub Med]

80. Wintermeyer SM, Nahata MC. Alcaligenes xylosoxidans subsp. xylosoxidans in children with chronic otorrhea. Otolaryngol Head Neck Surg 1996;14:332-334. [Pub Med]

81. Yabuuchi E, Kawamura Y, Kosako Y, Ezaki T. Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Ruger and Tan) comb. nov. Microbiol Immunol 1998;42:429-438. [Pub Med]

82.Yilmaz G, Aydin K, Koksal I, Caylan R, Akcay K, Arslan M. Post-ERCP bacteremia caused by Alcaligenes xylosoxidans in a patient with pancreas cancer. Ann Clin  Microbiol  Antimicrob 2006; 5: 19. [Pub Med]

Table 1.  Susceptibilities of Achromobacter xylosoxidansa
AntibioticnRangeMIC50MIC90Breakpointb% SusceptibleReference
AmikacinAmikacin33508-12816->128128>128128>128<16≤16 1376
Gentamicin334-646464<4 13
Gentamicin16256256256<405
GentamicinGentamicin                                                15501-644->128>6464>64>128<4≤4 2076
Kanamycin1664-512128256<1605
Netilmicin338-646464<8 13
Netilmicin1664-256128256<805
Tobramycin3316-643264<4013
Amidinocillin3332->256256>256  13
AmpicillinAmpicillin335016->1284->1283232>128128<8≤801376
Amoxycillin1632-51264256<805
Amoxycillin clavulanate1616-643264<8/405
Amoxycillin clavulanate334->1281664<8/4 13
Piperacillin330.5->1280.564<16 13
Piperacillin160.5-848<161005
PiperacillinPiperacillinPiperacillin tazobactam155050<2->2560.06-40.06-2<20.50.525621<16≤16≤16/2 207676
Temocillin3364->256>256>256  13
Ticarcillin15<2->2564>256<16 20
Ticarcillin164-51216128<16 5
Ticarcillin clavulanate162-1648<16/21005
Ticarcillin clavulanate330.25-64132<16/2 13
Ticarcillin clavulanate15<2-128<2128<16/2 20
Cefamandole334-1281632<8 13
Cefazolin3316-128128128<8013
Ceforanide334-256256256  13
Cefotaxime338-643264<8 13
Cefotaxime1664-256256256<805
Cefotaxime1516->6464>64<8020
Cefotetan3316-256128256<16 13
Cefoxitin16256256256<805
Ceftazidime331-64416<8 13
CeftazidimeCeftazidime15502->641-32841616<8≤8 2076
CeftriaxoneCefoperazoneCefoperazone sulbactamCefepime335050502-1282-81-48-1283222326444128<8≤16≤16/8<8 13767676
Cefuroxime3332-1286464<8013
Cephalothin16128-256128256<805
Aztreonam1632-646464<805
AztreonamAztreonam155032->6464-1286464>64128<8≤802076
Imipenem330.25-40.52<410013
ImipenemImipenem15501->160.5-42284<4≤4 2076
MeropenemMeropenem15500.25-40.25-41142 ≤4 2076
Ciprofloxacin331-64416<1 13
Ciprofloxacin162-848<105
CiprofloxacinCiprofloxacin15501->81->1283226416<1≤1 2076
NorfloxacinNorfloxacin33508-648->12832166464 ≤4 1376
Ofloxacin331-64432<2 13
Pefloxacin331-64432  13
Pipemidic acid16512512512  5
Nalidixic acidColistinChloramphenicolErythromycinRifampicinMinocycline1650505050501281-648->1288->1288-642-641284326416412832128>128328 ≤2≤8≤1≤4≤4 57676767676
Trimethoprim-sulphamethoxazolecTrimethoprim-sulphamethoxazolec  33 500.12-64 0.06-640.2 112 32<2/38 ≤2/38 13 76 

a  Modified from (6, 24, 32)
b  Current NCCLS interpretive standards for susceptibility (µg/ml) (50).
c  Trimethoprim-sulphamethoxazole tested in a ratio of 1:19.  Concentration refers to the
   trimethoprim component.

Table 2.  Susceptibilities of cloxacillin-sensitive ß-lactamase-producing Achromobacter xylosoxidansa
AntibioticnRangeMIC50MIC90Breakpointb% Susceptible 
Amoxicillin414-64864<8  
Amoxicillin clavulanate c412-3248<8/4  
Azlocillin41<0.12-20.250.5   
Piperacillin41<0.12-10.50.5<16100 
Piperacillin tazobactamd41<0.12-10.50.5<16/4100 
Ticarcillin410.25-814<16100 
Ticarcillin clavulanate c410.25-211<16/2100 
Cefamandole414-641632<8  
Cefoperazone410.5-424<16100 
Cefoperazone clavulanate c41<0.12-422<16100 
Cefotaxime4116-1286464<80 
Cefotaxime clavulanate c4116-646464<80 
Cefoxitin4164->256256256<80 
Ceftazidime411-1648<8  
Ceftazidime clavulanate c411-1648<8  
Cefuroxime41>256>256>256<80 
Cefuroxime clavulanate c41>256>256>256<80 
Moxalactam410.25-824<8100 
Imipenem411-422<4100 

a  Modified from (45).

b  Current NCCLS interpretive standards for susceptibility (µg/ml) (45).

c  Clavulanate (2µg/ml).

d  Tazobactam (4µg/ml). 

Table 3.  Susceptibilities of cloxacillin/clavulanic acid-susceptible ß-lactamase-producing Achromobacter  xylosoxidans a 
AntibioticnRangeMIC50MIC90Breakpointb% Susceptible
Amoxicillin17>256>256>256<80
Amoxicillin clavulanate c17<2-12864128<8/4 
Azlocillin174-643264  
Piperacillin174-1283264<16 
Piperacillin tazobactamd170.5-1614<16/4100
Ticarcillin1764->256>256>256<160
Ticarcillin clavulanate c170.5-641664<16/2 
Cefamandole1716-25632128<8 
Cefoperazone1716-12864128<16 
Cefoperazone clavulanate c171-828<16100
Cefotaxime1764->25664>256<80
Cefotaxime clavulanate c1732->256256>256<80
Cefoxitin17128->256256>256<80
Ceftazidime172-321632<8 
Ceftazidine clavulanate c172-1648<8 
Cefuroxime17>256>256>256<80
Cefuroxime clavulanate c17>256>256>256<80
Moxalactam170.5-822<8100
Imipenem171-222<4100
        

a  Adapted from (45).

b  Current NCCLS interpretive standards for susceptibility (µg/ml) (50).

c  Clavulanate (2µg/ml).

d  Tazobactam (4µg/ml).
Table 4.  In vitro susceptibilities of Achromobacter xylosoxidans isolates from patients with Cystic Fibrosis (61)

Antibiotic RangeMIC50MIC90Breakpointa% Susceptible

Ticarcillin clavulanate                               4->128              128          >128                        ≤16/2                       40

Piperacillin                                                   4->128              32            >128                        ≤16                          50

Piperacillin tazobactam                              4->128              32            >128                        ≤16/4                      55

Ceftazidime                                                  2->64                64            128                          ≤8                            45

Imipenem                                                     1->16                4              >16                          ≤4                            59

Meropenem                                                 0.5->16             8              >16                          ≤4                            51

Ciprofloxacin                                               0.5->8               >8            >8                            ≤1                            9

Tobramycinb                                               4->256              >256        >256                        ≤4                            3

Trimethoprim-

Sulfamethoxazole                                      >16                     >16          >16                          ≤2/38                      0

Chloramphenicol                                       8->64                 32            >64                          ≤8                            22

Minocycline                                               1-32                    8              16                            ≤4                            51

Colistinb                                                      100->200                                                                                           92

---------------------------------------------------------------------------------------------------------------------------------------------------------------

 a b  Current NCCLS interpretive standards for susceptibility (µg/ml) (50).

b Higher concentrations tested such as those achieved by aerosolization

Table 5.  In vitro susceptibilities of Achromobacter xylosoxidans subsp. denitifricansa
AntibioticnRangeMIC50MIC90Breakpointb% Susceptible 
Amoxycillin100.5-51232128<8  
Amoxycillin clavulanate c100.5-1281632<8/4  
Piperacillin100.125-102414<16  
Ticarcillin100.125-256864<16  
Ticarcillin clavulanate c100.125-25624<16/2  
Cefotaxime100.125-25624<16/2  
Cefoxitin100.125-256128256<8  
Cephalothin100.125-12832128<8  
Aztreonam1032-643264<80 
Ciprofloxacin100.125-828<1  
Pipemidic acid108-512256512   
Nalidixic acid102-128128256   
Gentamicin100.125-256128256<4  
Kanamycin100.125-512128256<16  
Netilmicin100.125-256128256<8  

a  Modified from (6).

b  Current NCCLS interpretive standards for susceptibility (µg/ml) (50).
c  Clavulanate (2µg/ml). 

Table 6.  In vitro susceptibilities of Achromobacter  piechaudiia 
AntibioticnRangeMIC50MIC90Breakpointb% Susceptible
Amoxycillin54-641632<8 
Amoxycillin clavulanate c51-222<8/4100
Piperacillin50.5-10.51<16100
Ticarcillin58-32816<16100
Ticarcillin clavulanate c51-422<16/2100
Cefotaxime5646464<80
Cefoxitin5646464<80
Cephalothin58-16816<8 
Aztreonam5161616<80
Ciprofloxacin52-824<80
Pipemidic acid5256256256  
Nalidixic acid52-3248  
Gentamicin516-1283264<40
Kanamycin58-3288<16 
Netilmicin52-3248<8 
        

a  Modified from (6).

b  Current NCCLS interpretive standards for susceptibility (µg/ml) (50).
c  Clavulanate (2µg/ml).

Table 7.  In vitro susceptibilities of Alcaligenes faecalis 
AntibioticAmpicillinN18Range2->128MIC508MIC90>128Breakpointa<8                                     Reference                    76
Amoxycillin342-10241664<86
Amoxycillin clavulanate b340.5-12824<8/46
PiperacillinPiperacillinPiperacillin tazobactam3418181-2560.5-5120.25-256410.5166432<16<16<16/267676
Ticarcillin341-5121664<166
Ticarcillin clavulanate b340.5-3228<16/2
Cefotaxime340.5-12828<86
Cefoxitin342-12848<86
CephalothinCefoperazoneCefoperazone sulbactamCeftazidimeCefepime34181818182-1281-320.5-21-324-64810.5483282816<8<16<16/8<8<8676767676 
Aztreonam34323232<86
Ciprofloxacin340.5-824<1
Pipemidic acid348-512256256 
Nalidixic acid34128128128 
Gentamicin3432-5123264<4
Kanamycin344-512128256<16
Netilmicin341-256816<8
        

a  Current NCCLS interpretive standards for susceptibility (µg/ml) (50).

b  Clavulanate (2µg/ml).

Review ArticlesAhmed MS et al. Achromobacter xylosoxidans, an Emerging Pathogen in Catheter-related Infection in Dialysis Population Causing Prosthetic Valve Endocarditis: A Case Report and Review of Literature. Clin Nephrol. 2009 Mar;71(3):350-4.

Leave a Reply

Your email address will not be published. Required fields are marked *